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A B S T R A C T

Time-lapse (or 4-D) seismic data play an important role in monitoring the spatial CO2 distribution during
and after the injection period. However, traditional interpretation or prediction of CO2 distribution is time-
consuming and might be sensitive to the quality of 4D seismic data. To solve these problems, we propose a
deep-learning-based method to efficiently and accurately characterize CO2 plumes in time-lapse seismic data.
We first introduce a workflow to build 3-D realistic impedance models containing CO2 plumes with various
shapes, sizes, and locations. From the impedance models, we then simulate synthetic seismic datasets and
automatically obtain the corresponding CO2 label volumes. We extract real noise from field seismic datasets
and add the noise to the synthetic ones to make them more realistic. We further construct a diverse and realistic
training dataset with the combination of synthetic data containing CO2 plumes and real data without CO2
plumes that are randomly cropped from field seismic data before CO2 injection. We finally utilize the training
datasets without any human labeling to train a 3-D deep U-shape convolutional neural network for detecting
CO2 plumes in the Sleipner time-lapse seismic images. Compared to traditional interpretation methods that take
several days or even weeks, our method takes only 29 s using one graphics processing unit (GPU) to predict CO2
plumes in a 512*512*256 seismic volume. Besides, our CO2 prediction can achieve 95.8% accuracy (compared
to the manual interpretation) and could distinguish reflections of CO2 plumes from the ones of pre-existing
fluids, thin layers, and noise. To more accurately characterize the CO2 plumes migration, we use dynamic
image warping to compute relative shifts that register the time-lapse seismic volumes before and after CO2
injection and then apply the same shifts to the predicted CO2 plumes. By doing this, we are able to reduce
the inconsistencies that may be introduced by acquisition, processing, push-down effect (velocity decrease by
injected CO2), and pull-up effect (wavelet distortion), which is helpful to more accurately characterize the CO2
plumes migration.
1. Introduction

Carbon Capture, Utilization and Storage (CCUS) is one important
approach to solve global climate change. CCS aims to separate CO2
from emission sources or air [1–3], transport the collected CO2 to
storage sites, and isolate CO2 from the atmosphere. The Geological CO2
Sequestration (GCS) has been proven to be one effective CCS method
according to several successful CO2 injection projects: the Sleipner
project in Norway, the Weyburn EOR project in Canada, and the In
Salah project in a gas field in Algeria [4–6]. The Sleipner CO2 injection
project is the world’s first industrial offshore CO2 CCS project. Since
September 15, 1996, CO2 has been injected into the Utsira Formation
aquifer close to the Sleipner Øst platform. The injection rate is at
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approximately 0.9 Mt for the first year through injection well 15/9-
A-16, and has been decreasing slightly each year since then [7–11]. By
2020, around 18.5 million tonnes of CO2 have been stored underground
[12].

Injecting CO2 into the subsurface would be at risk of leakage,
so monitoring the CO2 migration is crucial. In the Sleipner area, a
number of methods are used to monitor CO2 migration, including
well logging, time-lapse seismic surveys [13,14], gravity [15–17], and
Controlled Source Electromagnetic [18,19]. Well logging, as the most
direct method to observe the subsurface, provides the most accurate
geologic formations. However, well logging is costly and increases the
potential risk of CO2 leakage. Therefore, only one CCS monitoring well
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(16/7-3) is explored in the Sleipner which is not sufficient to most
studies [7]. The Controlled Source Electromagnetic (CSEM) method
can also be useful for monitoring CO2 migration [18,19]. Due to the
lack of time-lapse data and limited resolution, it is difficult to depict
the CO2 migration process exactly through CSEM. Gravity surveys can
provide the measurement of density changes, that might be related to
CO2 saturation. However, the gravity anomalies caused by the pure
CO2 response might be affected by irrelevant factors, like ocean tidal
fluctuations, scouring by sea-bottom currents, and so on [11]. These
interference factors cannot be easily separated from the gravity anoma-
lies, which requires processing the gravity data with considerable time
and efforts.

A time-lapse seismic survey serves an important role in character-
izing CO2 migration in the Sleipner field. The injected CO2 replaces
brine in the pore space of the rock, thus creating strong impedance
contrasts. These contrasts generate obvious responses in the seismic
data [20]. With these time-lapse seismic data, some scholars develop
various methods on how to monitor the CO2 migration in the sub-
surface. Quantitative seismic analysis is one of the key solutions to
detect the CO2 migration. This approach typically characterizes CO2
plumes by analyzing anomalies amplitude, or the downward bending of
the underlying layers (push-down) caused by CO2-induced low-velocity
[21–24]. Limited by the seismic data quality, the results of these
methods may be affected by noise or other interferences, thus leading to
some uncertainty in these methods. Another approach is to inverse the
elastic impedance and velocity with different inversion methods like
FWI [25], and stratigraphic inversion [26]. The inverted subsurface
models are then used to analyze the CO2 migration. However, the
accuracy of the inversion results is highly dependent on initial models
or the control of well logs which are typically missing in CCS projects.
Besides, models based on fluid simulation are often used to detect CO2
migration [12,27–33]. However, the initialization parameters related
to the fluid simulation are abundant and dependent on the experience
of interpreters.

Deep learning achieves many successful applications in the field of
computer vision as well as in geoscience. The emergence of the Con-
volutional neural network (CNN) promotes the development of deep
learning in various computer vision tasks. The applications of CNN for
semantic segmentation [34–36], object detection [37–40], and instance
segmentation [41–44] are very similar to geophysical problems. Many
scholars demonstrate the reliability and efficiency of deep learning in
many geophysical applications: geophysical imaging [45], inversion
[46–48], and some subsurface typical features identification such as
faults [49,50], salt-body delineation [51,52], paleokarst collapse [53],
horizons [54,55], channels [56,57], fluid reservoirs [58,59].

Deep learning-based CO2 identification has also achieved many
successful cases in recent years. Many geophysicists utilize different
deep-learning-based methods to investigate the relationship between
permeability, porosity, and phase saturations, and further predict the
CO2 migration or the potential CO2 leakage risk [60–63]. Meanwhile,
some geophysicists develop deep-learning-based methods that can char-
acterize CO2 migration in seismic data. Li et al. [64] utilize the velocity
decreasing anomalies to represent CO2 in the P-wave velocity model.
With the velocity models before and after CO2 injection, they simulate
two corresponding shot gathers and further calculate their difference as
the input for the fully convolutional neural network (FCN). However,
the difference in field data is not pure CO2 responses which can be
affected by amplitude difference, noise, and phase shift. Li and Li [65]
input field seismic images before and after CO2 injection to map the
manual interpretation of CO2 label volumes. Indeed, manually labeled
data will guide the network to extract more accurate features and
precise prediction results. However, manually labeled data is time-
consuming and heavily dependent on expert judgments. In addition,
the number and diversity of the manually labeled datasets may not be
necessarily enough to train a network. Moreover, the model trained by
2

labels from one survey might not be able to apply to other surveys.
We propose a fully automatic workflow without any human in-
teraction for CO2 characterization in time-lapse images and take the
Sleipner as an example to demonstrate the workflow. In this paper,
we first briefly introduce the geologic background of the Sleipner
field survey. We then prepare the datasets used to train the neural
network, including both synthetic and field data. In training datasets
preparation, we first include baseline seismic data with empty CO2
label volumes into the training datasets to prevent the network from
making wrong predictions of the seismic reflection features that are
similar to but not related to the CO2 plumes. We then introduce a
workflow to automatically simulate synthetic seismic datasets from
randomly generated impedance models based on geophysical statistical
data. We then include diffusive CO2 plumes with various impedance
patterns, shapes, and sizes into the impedance models. After obtaining
the impedance model in the depth domain, we further utilize depth-
time conversion to transform it into the time domain, which keeps our
training data and the field data in the same domain. We further add
folding structures and real noise extracted from field seismic images
into the synthetic seismic images to make them more realistic. In this
way, we are able to obtain diverse seismic data and the corresponding
CO2 label volumes for training the network. After training datasets
preparation, we then present a 3-D convolutional neural network based
on the U-net architecture and train it with both synthetic and field
datasets to predict CO2 plumes in 3-D field seismic images. With the
whole datasets without any human labeling, the network can make a
robust and accurate prediction of CO2 plumes in the Sleipner seismic
images acquired at different years. From the predicted CO2 probability
volumes, we can further extract the 3-D bodies of CO2 plumes for
quantitative analysis of the CO2 migration through time. In order to
obtain more accurate CO2 migration through time, we further register
all the time-lapse seismic volumes to the registered baseline seismic
volume. By doing this, we are able to eliminate the time shifts of the
CO2 plumes that are not related to their migration but resulted from the
push-down effects due to the velocity variation during the CO2 injection
and the pull-up effect due to wavelet distortion.

2. Geologic background and datasets of the Sleipner survey

Sleipner is located in Norway (the lower-left inset map in Fig. 1a)
and has been evaluated by many geological and geophysical experts
as a suitable CO2 injection field. CO2 should be typically stored in
reservoirs more than 800 m deep underground, where the temperature
varies between 35 degree and 40 degree and the pressure varies be-
tween 8 (MPa) and 10 (MPa) in Sleipner. These surrounding pressure
and temperature conditions can keep CO2 in a liquid or supercritical
state [66]. Under these conditions, the density of CO2 is 50 to 80
percent of the density of brine, where the buoyancy can drive the CO2
to migrate upwards as shown by the arrows in Fig. 1a. Therefore, a
storage site with good sealing capability is important to ensure that
CO2 is confined to the subsurface. The Sleipner field provides a good
CO2 storage site. The target layer of the CO2 injection is the Mio-
Pliocene layer Utsira Formation [67]. The top surface of the Utsira sand
varies very smoothly over a depth range of 550–1500 m. The bottom
structure of the Utsira sand is more complex and is characterized as
mud bottom incipient [68]. Inside the sandstone body, many thin intra-
reservoir (typically <1 m thick) shales are deposited, which separate
spatially discontinuous layers in the interior of the Utsira sand. How-
ever, these thin shales cannot be easily correlated between wells and
are not observable on the seismic data acquired prior to CO2 injection
[22]. As shown in the seismic data acquired before CO2 injection in
1994 (Fig. 1b) and after CO2 injection in 2006 (Fig. 1c), the intra-
reservoir shales begin to become visible after CO2 injection. Based on
the wells and seismic data with CO2 injection, many experts interpret
the layers in the Utsira Sand Fm black lines in Fig. 1b and c.

The Utsira sand is separated from the upper 26 m thick Pliocene

sand wedge (i.e., Top sand Wedge) by an approximately 6 m thick
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Fig. 1. (a) The schematic diagram of nine CO2 filled layers and the inset map (lower-left) shows the general location of the Sleipner project. The arrows represent the schematic
diagram of the rising CO2 plumes (modified after [70]). The crossline (left) and inline (right) sections of the Sleipner time-lapse seismic data with and without CO2 injection are
shown in (b) and (c), respectively. The interpreted layers results of Utsira Sand Fm and Top sand Wedge are more clearly to visualize only when CO2 is injected as shown in (c)
(modified after [71]).
Table 1
The years of acquisition and processing for available seismic images in the 4-D Sleipner
seismic dataset.

Processed year Acquired data

2001 1994,1999,2001
2007 1994,2001,2004,2006
2008 1994,2008
2010 1994,2010
2011 2010

shale layer. Both Utsira and Top Sand Wedge have high porosity (35%–
40%), high net/gross (98%), and 1 to 5 Darcy permeabilities [68].
Above these good reservoirs is an overlying Nordland Gp shale with a
thickness of more than 250 m, and the thick caprock provides relatively
good confining conditions for the reservoirs [11].

The Sleipner 4D Seismic Dataset is a reference dataset from the
Sleipner CO2 storage site, which is made accessible to the public
by Equinor [69]. The baseline data is acquired in 1994 before CO2
injection. Subsequently, starting in 1996, CO2 is continuously injected
into the subsurface every year. By the year 2021, 18.5 Mt of CO2 has
been injected into the storage. Along with the CO2 injection, several
seismic surveys have been carried out to ensure that we can access
the CO2 migration including in 1999, 2001, 2002, 2004, 2006, 2008,
2010, 2012, and 2016 [69]. Since the acquisition and processing are not
done simultaneously, the data was formed into multiple data pairs with
baseline data for the year 1994 (Table 1). To facilitate the description,
we simplify the year of acquisition and processing into a formulaic
expression, such as 𝑥𝑥𝐩𝑦𝑦. 𝑥𝑥 represents the year of acquisition and
𝑦𝑦 represents the year of processing. For example, 01𝐩07 represents
the data acquired in 2001 and processed in 2007. Every data in this
provided datasets contains four stacked types including near-, medium-
, far- and all-stacks. We take the nea-stacks data as the input data
which are adequate for the CO2 interpretation in this study [65]. We
consider the characterization of CO2 plumes in these time-lapse seismic
images as a binary image segmentation problem and propose a 3-D
convolutional neural network to solve this problem.

3. Training datasets preparation

As a data-driven approach, the deep neural network typically re-
quires a lot of training datasets for optimizing its model parameters.
In this section, we introduce the whole workflow for preparing the
training datasets. The datasets consist of two subsets including field
datasets and synthetic datasets. The field datasets contain a set of field
seismic volumes with empty CO2 plumes that are randomly cropped
from the field baseline data without CO2 injection. Therefore, the
CO label volumes within field datasets are filled with all zeros. The
3
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synthetic datasets contain abundant and diverse synthetic seismic data
using stochastic simulation and seismic forward modeling. Therefore,
the CO2 label volumes within synthetic datasets are accurate. With both
the field datasets and synthetic datasets, we are able to obtain a large
amount of training datasets for training the neural network.

3.1. Field training datasets

Before injecting CO2 into the subsurface at a storage site, we often
firstly need to assess the storage capacity and containment risks of the
CO2 storage site by acquiring seismic data, which is also called baseline
data. The baseline data can be taken as a reference to compare with
the seismic datasets after CO2 injection to estimate the distribution of
CO2. Based on this consideration, we show the seismic data before CO2
injection in 1994 (Fig. 2a) and after CO2 injection in 2010 (Fig. 2b) to
indicate the CO2 responses in seismic data. The green box indicates the
approximate location of CO2 plumes in 10𝐩10 (Fig. 2b). The reflectors
within the green box become more distinctive after CO2 injection. As
discussed above, CO2 replaces brine thus creating strong impedance
contrasts and further producing a high magnitude of amplitude in
seismic data. However, the high magnitude of amplitude does not
necessarily correspond to the existence of CO2 as denoted by the red
arrows in Fig. 2. Fortunately, we can identify these features as non-CO2
features by comparing baseline seismic data before CO2 injection in
Fig. 2a. Inspired by this comparison approach, we randomly crop some
sub-volumes of the field baseline data before CO2 injection and include
them in the whole training datasets. The participation of these baseline
field data in the neural network training not only keeps the network
away from incorrectly identifying some non-CO2 reflection features
but also allows the network to recognize the structural information
of the Sleipner area. This is helpful to improve the generalization of
the trained neural network on the field seismic data. Such a strategy
of jointly using both field datasets and synthetic datasets can be used
for any CO2 survey because we always have a baseline seismic volume
without CO2 inject in each survey.

The baseline data are acquired in 1994 and processed in four
different years as shown in Table 1. To eliminate errors introduced
in the processing, we randomly crop the 94p01, 94p07, 94p08, and
94p10 datasets to join the training datasets without CO2 injection. We
randomly extract 16 subsets of the baseline field seismic data before
CO2 injection and the corresponding CO2 label volumes are zeros
everywhere. In fact, feeding an excessive number of sample pairs with
empty labels in network training may lead to instability. So here we
prepare only 16 pairs of field datasets and feed them randomly into
the training process. We will explain more details in the 𝑇 𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑎𝑛𝑑
𝑉 𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 part.
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Fig. 2. The Sleipner time-lapse seismic data is acquired in 1994 (a) and 2010 (b). The layers after CO2 injection show stronger seismic reflection (within the green boxes) than
those before the CO2 injection. Some other strong reflection features denoted by red arrows may be misidentified as CO2 if the baseline data (a) without CO2 injection is not
available. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
3.2. Synthetic training datasets

Based on prior geological knowledge and geophysical laws, we pro-
pose a workflow (Fig. 3) to automatically generate synthetic datasets
for training our deep neural network. We first synthesize a flat
impedance model as an initial geological model (Fig. 3a), where the
velocities follow the statistic distribution of Sleipner field velocities
and the corresponding densities follow the Gardner relation [72].
We then simulate a diffusion coefficient map (Fig. 3b) by randomly
choosing the locations of an injection point and a series of migration
feeders for upward CO2, where the locations of the injection point and
migration feeders are within sandstone layers in the geological model.
With the diffusion coefficient map based on the geological model, we
further simulate CO2 plumes by simply solving a diffusion equation to
morphologically approximate the CO2migration. We then modify the
impedance values within the simulated CO2 plumes (Fig. 3d) according
to the physical equations for the decay of velocity and density with
CO2 saturation. After CO2 injection, we transform the depth-domain
impedance model into a time-domain impedance model (Fig. 3e) using
depth-time conversion. We then compute the corresponding reflectivity
model (Fig. 3f) and further convolve the reflectivity model with a
wavelet to simulate seismic data (Fig. 3g). To make the synthetic seis-
mic data more realistic, we implement some folding (Fig. 3h) and add
real noise extracted from field data to obtain the final synthetic seismic
image (Fig. 3i). Besides, we can apply the depth-time conversion to map
the CO2 plumes from the depth domain (Fig. 3c) to the time domain
(Fig. 3q). Since we use the same velocity model for both the conversion
of CO2 plumes and impedance model used to simulate the seismic data,
the labels of CO2 plumes and the corresponding seismic data will be
consistent in the time domain after the conversion. In this way, we are
able to obtain synthetic training dataset pairs of a seismic volume and
the corresponding CO2 labels like the ones in Figures (Fig. 3i and j).
In the following part, we will introduce each step of the synthetic data
workflow in more detail.

3.2.1. Building an initial flat impedance model
We firstly simulate a stochastic impedance model, where the 3-D

grid cell size is defined as 12.5 m × 12.5 m × 1 m in 𝑥, 𝑦, and 𝑧 (depth)
directions. The stochastic simulation on flat impedance models requires
two parameters: the thickness of each layer and the corresponding
impedance distribution. To make the synthetic data more realistic
compared to the field data, we utilize statistical data from Equinor
geological models to determine the layer thickness and impedance
distribution. According to the geological models in the Sleipner survey
[4], the interior of the CO2-injected layers consists of sandstone with
a thickness ranging from 30 to 116 m, interspersed with shales with
4

a thickness ranging from 0.5 to 1.5 m. Equinor geological models also
provide a human-picking velocity model on Utsira Sand Formation and
Pliocene Sand Wedge. Fig. 3i shows the results of the velocity statistical
histograms of the Utsira Sand Formation (green area) and Pliocene Sand
Wedge (blue area) and the corresponding fitted Gaussian distribution
curves. These two statistics can be considered as the distribution of
velocities for the sandstone since the velocities of shale occupy only
a tiny fraction of the statistics.

With all these statistical data, the sandstone layer thickness is
randomly selected between 25 to 50 m, while the shale layer thickness
is set to 1 m. After determining the thickness of each layer, we further
determine the velocities of each layer based on statistical Gaussian
distributions of sandstone and shale shown in Fig. 3k. In these distri-
butions, the mean velocity value of each sandstone layer is randomly
chosen from 2000 to 2250 (m/s). While the mean velocity value of each
shale layer is randomly chosen from 2300 to 2400 (m/s). The ranges of
mean velocities are determined by the statistical analysis of the well-log
data near the survey [73]. The variances of each sandstone layer and
each shale layer are both randomly chosen from 200 to 400 (m/s). The
corresponding densities can be obtained through the Gardner relation
with the determined velocity:

𝜌 = 𝛼𝑉 𝛽
𝑝 , (1)

where 𝜌 is density given in g/cm3, 𝑉𝑝 is P-wave velocity, and 𝛼 and 𝛽
are empirically derived constants that depend on the geology. Gardner
et al. [72] propose that the relationship can be a good fit by taking 𝛼 =
0.23 and 𝛽 = 0.25. With the velocities and densities settled, we are able
to automatically obtain a series of synthetic flat impedance models like
the one in Fig. 3a where the sandstone and shale layers intersect each
other.

3.2.2. Simulating CO2 plumes
We secondly simulate CO2 plumes by simply solving a diffusion

equation to morphologically approximate the CO2 migration. In order
to obtain diffusive CO2 plumes, we first define a 3-D map of diffusion
coefficients ranging from 0 to 1 as shown in Fig. 3b. Such a coefficient
map is calculated in accordance with the upward migration of CO2
rule, where the diffusion coefficient within each sandstone layer is
inversely proportional to the distance to the separating shale on the
top of the sandstone layer. Besides, we set the diffusion coefficients
within randomly selected injection points and CO2 migration feeders
to be relatively higher, which ensures that the CO2 migrates from the
source (injection point), following the feeder paths, to the top of each
sandstone layer. In this way, the CO2 trends to be concentrated at the
top of sandstone layers and trapped by the upside shale layers. CO2
then will migrate through the shale layers to upper sandstones through
the feeder paths. After the diffusion coefficients are established, we
also introduce some lateral variations and irregular ellipsoid areas into
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Fig. 3. Workflow of generating the synthetic seismic data and corresponding CO2 label volume. We first synthesize a flat impedance model (a), where the velocities follow the
velocity distribution of Sleipner field statistics including velocity statistics (k) and layer thickness (l). We then simulate a CO2 diffusion coefficient map (b) and corresponding CO2
plumes. We modify the impedance values within the simulated CO2 plumes (d) according to the velocity decay equation (m) and density decay equation (n). After CO2 injection,
we further perform the depth-to-time conversion to obtain the impedance model (e) and CO2 plumes (q) in the time domain. We then compute the corresponding reflectivity
model (f) and further convolve the reflectivity model with a wavelet (o) to simulate seismic data (g). To make the synthetic data more realistic, we implement some folding (h)
and add real noise (p) to the synthetic seismic data (i). In this way, we are able to synthesize training dataset pairs of seismic volumes and the corresponding CO2 labels like the
ones in Figures i and j. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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the diffusion coefficient map. The irregular ellipsoid areas and lateral
variations are helpful to simulate realistic CO2 plumes with laterally
anisotropic shapes.

With the defined diffusion coefficient map determined, we further
simulate CO2 plumes by implicitly solving the diffusion equation as
follows [74]:

𝑔(𝐱) − 𝜎𝑐(𝐱)∇𝑔(𝐱) = 𝑓 (𝐱), (2)

here 𝑔(𝐱) represents a volume with CO2 plumes after diffusion. 𝑓 (𝐱)
is the input volume where CO2 is initiated at the injection point and
eeder paths. Here we include CO2 at the feeder paths in the initial

input to accelerate the diffusion process. 𝑐(𝐱) represents the previously
defined diffusion coefficient map as shown in Fig. 3b. The constant 𝜎 is
a parameter that controls the relevant intensity of diffusion. When 𝜎 =
0, Eq. (2) becomes 𝑔(𝐱) = 𝑓 (𝐱), where no diffusion process is carried out
in the initial state. By solving this linear equation using the conjugate
gradient algorithm, we are able to simulate the diffusion process in one
step to efficiently obtain CO2 plumes like the one shown in Fig. 3c.

Note that here we are not trying to physically simulate the process
of CO2 migration in the subsurface, which could be highly time-
consuming because we need to generate a lot of training datasets. For
our problem of characterizing the CO2 shapes and locations within a
seismic image, our simple method is sufficient to simulate the realistic
geometries of CO2 plumes (golden shapes in Fig. 3c) in the subsurface.

3.2.3. Building impedance models with CO2 plumes
With the impedance model (Fig. 3a) and CO2 plumes (Fig. 3c) gener-

ated, we further modify the impedance values within the simulated CO2
plumes. The impedance variations introduced by CO2 plumes results in
corresponding changes in both velocities and densities. For the velocity
decay function, we use an exponential decay function proposed by
Ghaderi and Landrø [75] to indicate the P-wave velocity 𝑉𝑝 changes
along with CO2 saturation S:

𝑉𝑝 = 𝑉𝑝1 + 𝑉𝑝2𝑒
−𝜅𝑆 , (3)

where 𝑉𝑝1 = 1437 (m/s), 𝑉𝑝2 = 613 (m/s), and 𝜅 = 10. These parameters
are estimated by Ghaderi and Landrø [75] through fitting the data with
a porosity value of 37%. This Eq. (3) indicates that the velocity decays
with CO2 saturation as shown in Fig. 3m and we apply a similar velocity
decay to the initial velocity model where CO2 plumes occupy.

The density of the rock 𝜌 consists of two parts: the density of the
fluid 𝜌𝐹 and the density of the rock matrix 𝜌𝑆 . We can formulate these
three densities in terms of porosity 𝜑 by using the equation:

𝜌 = 𝜑𝜌𝐹 + (1 − 𝜑)𝜌𝑆 . (4)

According to the statistic data, we set 𝜑 to be 0.37 and 𝜌𝑆 to be 2650
(kg∕cm3). 𝜌𝐹 is the composed fluid density including both CO2 fluid
and water. So the density of fluid 𝜌𝐹 can be expressed as a linear
combination of these two phases [76]:

𝜌𝐹 = 𝑆𝜌CO2
+ (1 − 𝑆)𝜌𝑊 , (5)

where 𝑆 represents the saturation of CO2, 𝜌CO2
represents the density

of CO2, and 𝜌𝑊 represents the density of water. In general, the density
of water 𝜌𝑊 is given as 1050 (kg∕cm3). CO2 density is sensitive to
variations in temperature and pressure. If the temperature increases
from 30 to 40 degrees, the density of the CO2 fluid will decrease
from 680 (kg∕cm3) to 300 (kg∕cm3) [76]. Alnes et al. [17] propose the
density of CO2 is 485 (kg∕cm3) where the well-bottom temperature is
48 ◦C and the fluid pressure is 105 bar. The CO2 density turns to be
425 (kg∕cm3) when reaching the top Utsira. Alnes et al. [17] conclude
that the average density of CO2 is 675 (kg∕cm3). To include the full
range of CO2 density decay variation, we calculate the variation of
rock density 𝜌 with CO2 saturation 𝑆 with both the CO2 density 𝜌CO2
t 425 (kg∕cm3) (orange line in Fig. 3n) and 675 (kg∕cm3) (blue line in
ig. 3n), respectively:
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= 𝜑(𝑆𝜌CO2
+ (1 − 𝑆)𝜌𝑊 ) + (1 − 𝜑)𝜌𝑆 . (6)
With two calculated results in Fig. 3n, we are able to obtain the
density decay function along with the increase in CO2 saturation.
Besides, the corresponding temperatures and pressures change as the
depth increases. Therefore, we also introduce a depth-dependent at-
tenuation compensation factor in the density decay process to make
the simulation more realistic and reliable. With the eventual decay
equation for velocities and densities with CO2 saturation, we fur-
ther apply these decay functions to the impedance model accordingly.
The impedance model with CO2 plumes (Fig. 3d) shows a significant
impedance decrease and a distinct lateral variation where CO2 plumes
occupy.

The impedance model in the depth domain can directly reflect the
true shape of CO2 plumes, but the provided Sleipner field seismic
images are in the time domain. Therefore, we need to convert the
depth-domain impedance model to the time-domain and further gen-
erate the corresponding seismic data for training. We use the velocity
model and the following equation to calculate the traveltime:

𝑡𝑖 =
𝑛
∑

𝑖=1
2 ∗ 𝑑𝑧∕𝑣𝑖, (7)

where 𝑡𝑖 represents the traveltime, 𝑑𝑧 represents the depth interval
(1 m) of the impedance model, and 𝑣𝑖 represents the velocity of the 𝑖th
oint in the velocity model. With the calculated traveltime map, we fur-
her interpolate the impedance model into the time domain with a 2 ms
ampling interval. In this way, we are able to obtain the impedance
odel in the time domain as shown in Fig. 3e. We can observe a

ignificant bending of the impedance model after the conversion to
he time domain, compared to the flat impedance model in the depth
omain. In view of the fact that the velocity decays introduced by CO2
enerate longer traveltimes compared to the surrounding velocity. It
lso means that the shape of the CO2 plumes obtained on the time-
omain seismic image is not consistent with the real one. The related
ssues are discussed and analyzed in the section of 𝑆𝑒𝑖𝑠𝑚𝑖𝑐 𝐷𝑎𝑡𝑎 𝑎𝑛𝑑
O2 𝑃 𝑙𝑢𝑚𝑒𝑠 𝑅𝑒𝑔𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛.

.2.4. Simulating synthetic seismic volumes
Through the above processes, we are able to obtain abundant and

iverse impedance models containing various CO2 plumes. We can
asily convert the impedance models to reflectivity models (Fig. 3f) and
urther convolve with a Ricker wavelet (Fig. 3o) to simulate synthetic
eismic volumes like the one in Fig. 3g. Furre and Eiken [14] point
ut that the Ricker 30-Hz wavelet (red curve in Fig. 3o) represents the
ominant frequency of the 3-D seismic data in the Sleipner survey. We
andomly choose wavelet peak frequencies between 25 Hz to 35 Hz
gray curve in Fig. 3o) for each seismic volume to improve the diversity
f synthetic seismic data. Here, we obtain the initial seismic image, but
t still differs from the Sleipner field data in terms of folding structures
nd noise.

Folding is widespread during stratigraphic evolution because sed-
mentary horizontal layers will suffer an outside force (e.g., plate
ovement, etc.) and consequently be deformed. Simulating folding

tructures to the seismic data can make the synthetic data more con-
istent with the field data. We randomly simulate folding structures by
ertically shearing the initial seismic image with the method proposed
y Wu et al. [55]. We avoid adding significantly deformed structures
f anticlines and synclines so that the dip angles of the layers are not
arge as shown in Fig. 3h.

Instead of adding random noise, we add noise extracted from field
eismic data into our synthetic datasets. We take the 10p10 (Fig. 4a)
ata as an example to illustrate the process of noise extraction as shown
n Fig. 4. We first compute smoothed seismic data (Fig. 4b) by using the
tructure-oriented smoothing method [74]. We then compute the noise
ata (Fig. 4c) by subtracting the smoothed data from the original one.
fter obtaining the real noise, we randomly crop a sub-volume with the
ame size as the synthetic seismic volumes (Fig. 3p) from the full noise
olume (Fig. 4c). Note that Fig. 3p is zoomed out in the displaying.
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Fig. 4. Workflow of extracting real noise volume from field data. Taking the seismic data 10p10 (a) as an example, we first apply a structure-oriented smoothing filter to the
original data (a) and obtain the smoothed seismic volume (b). We then obtain the noise volume (c) by subtracting the smoothed volume from the original one.
It has the same size as Fig. 3h. After obtaining a noise volume, we
further add it to synthetic seismic data with a noise-to-signal ratio that
is randomly defined within the range between 0.1 and 0.9.

By randomly choosing the parameters at each step of the entire
workflow (Fig. 3), we can obtain diverse and realistic seismic im-
ages with random impedance models, random CO2 plumes, random
wavelets, random folding structures, and a random subset of real
noise. The corresponding label volumes for CO2 plumes are accurate
because they are automatically calculated by well-defined equations.
We show the CO2 plumes label overlaid on the seismic in Fig. 3j,
where the label values are defined as ones within the CO2 plumes
while zeros elsewhere. In total, we obtain 400 pairs of 3-D seismic
volumes and their corresponding CO2 plumes label volumes like those
shown in Fig. 5. Fig. 5 shows four seismic volumes (the first row) and
their corresponding label volumes in 2-D (the second row) and 3-D
(the second row) overlaid view. These diverse seismic images and the
corresponding labels can enable the neural network learns to accurately
detect CO2 features.

In addition to the synthetic datasets (Fig. 6a and b), we also ran-
domly crop 16 pairs of field training datasets (Fig. 6c) from the baseline
field seismic data before CO2 injection. The CO2 label volumes for these
real datasets are zeros everywhere as shown in Fig. 6d. In this way,
we obtain a combination of mixed training datasets (Fig. 6) where
the synthetic datasets (Fig. 6a and b) tell a neural network to detect
all possible CO2 features while the field ones (Fig. 6c and d) tell the
network to avoid mis-detecting the features resembling the true CO2
features. In addition, we implement the same workflow to generate
validation datasets containing 100 pairs of 3-D seismic volumes.

4. CNN-based 𝐂𝐎𝟐 characterization

After finishing the preparation of the training datasets, we then in-
troduce the network architecture trained for characterizing CO2 plumes
in 3-D seismic volumes. In addition, several strategies are applied
while training our network, such as data augmentation, loss function,
learning rate scheme, etc. After the training is completed, we show the
feature maps of each layer in our network, the loss unction curves,
and the prediction results in the validation datasets to demonstrate the
effectiveness of our method.

4.1. Network architecture

We consider the CO2 plumes characterization in 3-D seismic vol-
umes as an image segmentation problem and we solve the problem by
using a neural network based on U-net [34], which has been widely
used in image segmentation problems in various fields. The architecture
of our network (Fig. 7) consists of an encoder–decoder architecture,
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which includes four downsampling kernels and the corresponding up-
sampling kernels. Each downsampling kernel in our network contains
two 3 ∗ 3 ∗ 3 kernel convolutional layers with a rectified linear
unit (ReLU) and one 2 ∗ 2 ∗ 2 kernel max-pooling layer. After four
downsampling blocks, the number of feature channels changes from 32
to 64, 128, 256, and 512, respectively. These features obtained from
different downsampling blocks are connected to the corresponding
upsampling layers at the same level by skip-connection operators. The
skip-connection operators aim to fuse both high-level and low-level
features obtained in the encoder stage (lower-left part in Fig. 7) to
the decoder stage (lower-right part in Fig. 7). Every corresponding up-
sampling kernel in the decoder stage contains one 2 ∗ 2 ∗ 2 kernel
up-sampling layer and two 3 ∗ 3 ∗ 3 kernel convolutional layers with
a ReLU. After four upsampling blocks, the number of feature channels
changes from 512 to 256, 128, 64, and 32, respectively.

4.2. Training and validation

Utilizing our mixed training datasets (Fig. 6), we can train the
3D deep neural network (Fig. 7) for characterizing CO2 in time-lapse
seismic images. The sizes of the input mixed training datasets and the
corresponding label volumes for our network are 240 ∗ 192 ∗ 192.
Before feeding the data into the network, we pre-process the training
samples to make the training process more robust and obtain a bet-
ter model. The first step is mean–variance normalization (subtracting
the mean value of the sample and dividing the whole sample by its
variance afterward). Secondly, we rotate the seismic volume and its
corresponding CO2 label volume around the z axis to further increase
the diversity of training data. The rotation is chosen randomly from
90, 180, and 270 degrees. In this way, each training data pair in our
training datasets becomes two pairs when feeding into the network: the
original data and the rotated one.

We regard the CO2 detection problem as a regression problem, and
use Mean-Square Error (MSE) as the loss function:

𝑀𝑆𝐸 = 1
𝑁

𝑁
∑

𝑖=1

(

𝐱𝑖 − 𝐲𝑖
)2 , (8)

This loss function 𝑀𝑆𝐸 is the average of the squared differences
between the predicted 𝐱𝑖 and labeled 𝐲𝑖 data. 𝑁 represents the total
number of samples in the labeled data (240 ∗ 192 ∗ 192). The op-
timization method for our network is the Adam method [77] with a
learning rate of 1e–4 at the beginning. To better optimize the loss in
the late training process, we choose a learning rate scheme that reduces
the learning rate to one fifth of the original when the loss does not
decline for a duration of four epochs. The loss and accuracy curves on
training (the blue curve) and validation (the orange curve) datasets are
shown in Fig. 8. Here, we show the prediction results (the second row in
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Fig. 5. We show four synthetic seismic data (the first row) obtained by our synthetic workflow (Fig. 3) and the corresponding CO2 label volumes. The label volumes are shown
in both 2-D (the red area in the second row) and 3-D (the third row) views. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 6. The entire training datasets consists of two subsets including synthetic datasets and field datasets. The synthetic datasets contain abundant and diverse synthetic seismic
data (a) using stochastic simulation and seismic forward modeling. The corresponding CO2 label volume (b) within synthetic datasets is accurate. The field datasets contain a set
of field seismic volumes (c) with empty CO2 plumes that are randomly cropped from the field baseline data without CO2 injection. The corresponding CO2 label volume (d) within
field datasets are filled with all zeros.
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Fig. 7. The network architecture used in our method (the upper part) and the corresponding features (the upper part) in each layer. The feature map shows that the encode stage
continuously extracts features about CO2 from the seismic data and the decode stage gradually approximates the features toward the label volume.
Fig. 8. The loss curves (a) and accuracy curves (b) for both training (blue) and validation (orange). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
Fig. 9) for the four seismic data (the first row in Fig. 9) in the validation
datasets which are not involved in the training. We can observe that the
prediction results are in good agreement with the true labels (the third
row in Fig. 9), which also means our method can extract accurate CO2
features from seismic volumes.

To understand the training process of the network better, we show
the feature maps (the lower part in Fig. 7) of each layer in the network.
We can observe that the encode stage continuously extracts features
about CO2 from the seismic data and the decode stage gradually
approximates the features toward the label volumes. The Encoder stage
extracts features related to the strong amplitudes, which is consistent
with our previous knowledge of the response of the injected CO2.
Afterward, in the decoder stage, we can observe that the unrelated
noise gradually decays and the features fit the CO2 label volume.

5. Field data applications

We take the Sleipner time-lapse seismic data published by Equinor
[69] as an example to test the effectiveness of our method. We selected
99p01, 01p07, 04p07, 06p07, 08p08, and 10p10 as the input of our
network. Since we did not freeze the input size of the network, we can
input seismic data of any size into the network. With an input seismic
volume of 256 × 512 × 256 samples, our network can efficiently predict
CO plumes, which takes around 29 s by using one graphics processing
9

2

unit (GPU). Fig. 10 show a 3-D view of the predicted CO2 probability
volumes for 99p01, 01p07, 04p07, 06p07, 08p08, and 10p10 which
are overlaid with the corresponding seismic volumes. Fig. 11 shows the
3-D bodies of CO2 plumes that are extracted from the CO2 probability
volumes (Fig. 10) by using the marching cubes algorithm [78]. The 3-
D view of the predicted results clearly show the growth of CO2 plumes
under the subsurface along with the continuous injection of CO2.

In order to better verify the accuracy and reliability of our method,
we compare our results with manual interpretation and a traditional
method. Equinor [4] provides the boundary of the CO2 plume in 9
layers (as denoted by yellow curves in Figs. 12 and 13) with manual
interpretation. We take a window in the time direction and calculate
the average of the absolute amplitude difference between 94p10 and
10p10 to indicate the location of the CO2 plumes [65]. This traditional
method, which relies on absolute amplitude anomalies, can only pro-
vide rough CO2 locations and boundaries in time slices as shown in the
first row of Fig. 12. Compared with the manual interpretation results
enclosed by the yellow curves, the traditional method does not satisfy
the requirements for further analysis.

Unfortunately, Equinor [4] does not provide nine layers in the time
domain and the corresponding thickness of the CO2 plumes. Therefore
we pick 9 layers using the horizon extraction method [79] with some
manually defined control points. Since the picked horizons may not
perfectly match the geologic layers and the shale layers within Utsira
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Fig. 9. We show four seismic data (the first row) from validation datasets and their corresponding CO2 prediction results with our method (the red area in the second row). Our
results are consistent with the ground-truth CO2 features (the red area in the third row). (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
Fig. 10. By applying the trained CNN model to the seismic data of 99p01, 01p07, 04p07, 06p07, 08p08 and 10p10, we obtain the corresponding CO2 probability volumes overlaid
with the seismic volumes.
Formation are not continuous, we compute the average of the predicted
CO2 probability over a time window (centered at the horizons) and
display the averaged probabilities overlaid with the horizon slices in
the second row of Fig. 12. Compared to the results of the traditional
method in the first row of Fig. 12, our results are more consistent with
the manually interpreted labels. Further, we quantitatively evaluate the
results of our predictions compared to manual labeling. The accuracy
10
and mean Intersection over Union (mIoU) metrics for each layer are
shown in the Table 2. Accuracy can indicate the percentage of points
that are accurately classified. mIoU can indicate the average overlap
ratio between the area occupied by the predicted CO2 and the labeled
CO2 area. All of our predicted results can achieve more than 95%
accuracy and more than 0.8 mIoU score. It means that our method can
simultaneously balance the efficiency with the accuracy.
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Fig. 11. From the CO2 probability volumes predicted from the seismic data of 99p01, 01p07, 04p07, 06p07, 08p08 and 10p10, we are able to automatically extract the 3-D CO2
plumes bodies (colored by yellow) by using the marching cubes method. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
Fig. 12. The traditional results (the first row) and our prediction results (the second row) of 10p10 within corresponding nine layers. The yellow curves are manually interpreted
as CO2 boundaries by Equinor [69]. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 2
The accuracy and mean IoU of our prediction results.
Layer 1 2 3 4 5 6 7 8 9 Average

Accuracy 0.9597 0.9650 0.9649 0.9598 0.9596 0.9561 0.9548 0.9513 0.9515 0.9581
Mean IoU 0.8517 0.8546 0.8483 0.8327 0.8584 0.8404 0.8339 0.8183 0.8130 0.8390
In addition to the predicted CO2 probabilities on the nine layers of
10p10, we can also obtain the CO2 probabilities on the nine layers in
all the seismic volumes of 99p01, 01p07, 04p07, 06p07, and 08p08
from which we are able to analyze the migration of CO2 with time.
The first row of Fig. 13 shows the results of 10p10, where the results
are in good consistent with the manual interpretation (yellow lines).
The amplitude within CO2 plumes in the lower layers may be relatively
weak compared to the surroundings, which could be influenced by
the temperature and pressure changes at different depths or the errors
introduced by seismic processing.

We further show the full-layered results in time-lapse seismic images
to observe the migration of CO2 plumes including 08p08 (the second
row in Fig. 13), 06p07 (the third row in Fig. 13), 04p07 (the fourth
11
row in Fig. 13), 01p07 (the fifth row in Fig. 13), and 99p01 (the
sixth row in Fig. 13). We can clearly observe that the CO2 plumes
increase over time. Besides, the prediction results of CO2 plumes are
in good agreement with the results of Li and Li [65]. The growth of the
CO2 plumes shown in Fig. 13 is consistent with the physical law: CO2
migrates upward due to buoyancy and diffuses along with the layers.
With the buoyancy driving, the lower layers are in a slower growth rate
compared to the top layer, which is consistent with the observations by
Arts et al. [13]. We can also observe that the amount of CO2 plumes in
the ninth layer is relatively small in 1999 because CO2 has just reached
the top layer at that time [24].

Another important analysis is about the CO2 feeders. If the threshold
pressure of injected CO exceeds a certain value, the CO plumes may
2 2
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Fig. 13. The predicted CO2 results shown in nine layers for 10p10 (the first row), 08p08 (the second row), 06p07 (the third row), 04p07 (the fourth row), 01p07 (the fifth row),
and 99p01 (the sixth row), respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
break through the shale from the sandstone upwards, thus forming a
chimney [29]. Detecting such chimneys is typically difficult in indi-
vidual seismic data and it requires the analysis of year-by-year seismic
data [80]. The North-eastern feeder (Layer 5 to Layer 6) and the South-
western feeder (Layer 7 to Layer 8) are two typical feeders which have
been proved by many scholars and published in the Equinor reference
model [4].

The evidence of the North-eastern feeder (Layer 5 to Layer 6) is
that the initial emergence location and the main growth direction of
the sixth layer do not have any correlation with the injection point.
Therefore, many scholars believe that CO2 migrates from Layer 5 to
Layer 6 through the North-eastern feeder, which leads to the growth
of Layer 6 to deviate from the injection point. Our prediction results
in Fig. 13 are consistent with the above analyses. In the sixth layer
(the sixth column in Fig. 13), the CO2 plume located near the injection
point does not show a significant increase along with the CO2 injection.
While the CO2 plumes in the lower-right of the sixth layer appear to
be growing visibly, which indicates the CO2 migration is at a certain
distance from the injection point. Thus, our prediction results prove
that CO2 migrates from Layer 5 to Layer 6 through the chimney.

The south-western feeder (Layer 7 to Layer 8) can be confirmed
by observing that the growth of the two individual parts in layer 8
(the eighth column in Fig. 13) is not connected and correlated. We can
observe that the larger region is continuously exaggerated from 1999
to 2010. However, the smaller region suddenly appears and starts to
12
expand since 2006, which does not correlate well with the CO2 in the
large region. We can figure out that our results (the eighth column in
Fig. 13) are consistent with the previous analysis. These analyses of
CO2 migration and the two chimneys further verifies that the results of
our method are physically consistent and reliable.

6. Seismic images and the corresponding 𝐂𝐎𝟐 plumes registration

Our deep learning method can characterize CO2 plumes in time-
lapse seismic images for analyzing CO2 migration. However, the CO2
plumes in time-lapse seismic images are not consistent with the true
CO2 shape in the subsurface as discussed in the section of 𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐
𝑇 𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑠. They will be affected by the acquisition inconsis-
tency, processing inconsistency, velocity changes (push-down effects),
and wavelet distortion (pull-up effects). We will discuss how to solve
these problems to obtain CO2 plumes whose shapes are more consistent
with the real ones.

As we discussed in the section of 𝐺𝑒𝑜𝑙𝑜𝑔𝑖𝑐 𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑎𝑛𝑑 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑠
𝑜𝑓 𝑡ℎ𝑒 𝑆𝑙𝑒𝑖𝑝𝑛𝑒𝑟 𝑆𝑢𝑟𝑣𝑒𝑦, the time-lapse seismic data are acquired with
slightly different acquisition geometries in different years, We show the
seismic surveys of 99p01 (blue), 06p07 (yellow), and 10p10 (orange)
in Fig. 14. The seismic surveys of 01p07 and 04p07 are consistent
with 06p07, which are shown as the yellow region in Fig. 14. The
seismic survey of 08p08 is consistent with 10p10, which is the orange
region in Fig. 14. Characterizing CO migration with time-lapse seismic
2
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Fig. 14. The seismic surveys map of 99p01 (blue), 06p07 (yellow) and 10p10 (orange) in Fig. 14. The seismic surveys of 01p07 and 04p07 are consistent with 06p07, which
are also the yellow area in Fig. 14. The seismic survey of 08p08 is consistent with 10p10, which is also the orange area. The purple box shows the boundary of the intersection
of all seismic surveys. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 15. The workflow of seismic data registration. We first match the baseline data 94p01, 94p08, and 94p10 with the baseline data 94p07 by the 𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑖𝑚𝑎𝑔𝑒 𝑤𝑎𝑟𝑝𝑖𝑛𝑔
(𝐷𝐼𝑊 ) method. We can obtain the respective time shift (a, b, and c), which we consider as the time shift caused by processing. In this way, all baseline seismic data are consistent
with the 94p07 in position. We then apply the 𝐷𝐼𝑊 method to match seismic data after CO2 injection including 10p10, 08p08, 06p07, 04p07, 01p07, and 99p01 with their
corresponding registered baseline seismic volume. By doing this, we have achieved that all seismic data after CO2 injection are registered to the same baseline data (94p07).
datasets involves multiple seismic data, and the acquisition geometries
may not be consistent. Some of the CO2 spatial migration changes
we observed from multiple time-lapse seismic data may be due to
the inconsistency of the acquisition geometries. In order to reduce the
uncertainty caused by these acquisition geometries, we need to exclude
this observation system inconsistency and obtain a more objective
reflection of subsurface CO2 migration. We take the overlaying area
(bounded by the purple rectangle) as a new survey and re-grid all
the seismic data in this new survey. By doing this, all the time-lapse
seismic data are resampled in a shared survey with the same acquisition
geometry and we are able to eliminate the CO2 uncertainties caused by
the acquisition variations over time.

As shown in Table 1, the time-lapse seismic data are not processed
under the same baseline data, which introduces uncertainties or in-
consistencies in the seismic images. Besides, the injection of CO2 will
decrease the corresponding velocity, thus leading to some structural
artifacts. This effect lead to a push-down effect in the layers below
[81]. Furre et al. [22] also point out the wavelet distortion will cause
an apparent pull-up at the top reflector for a CO2 thickness below 8 m.
To eliminate the potential errors introduced by processing, push-down
effect, and pull-up effect, we propose a workflow (Fig. 15) to register
seismic images and the corresponding CO2 plumes.

To reduce the inconsistency of baseline data, we first choose the
baseline data 94p07 as the reference and register all the other baseline
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data 94p01, 94p08, and 94p10 to the reference by using the 𝐷𝑦𝑛𝑎𝑚𝑖𝑐
𝑖𝑚𝑎𝑔𝑒𝑠 𝑤𝑎𝑟𝑝𝑖𝑛𝑔 (𝐷𝐼𝑊 ) method [82]. Fig. 15a, b, and c show the
estimated time shifts for the data 94p01, 94p08, and 94p10, respec-
tively, which can be considered as the inconsistencies caused by data
processing at different years. We can apply the estimated time shifts to
the corresponding seismic data to eliminate the inconsistencies caused
by data processing. In this way, all baseline seismic data (without CO2
injection) are vertically aligned with the baseline data of 94p07.

We then apply the 𝐷𝐼𝑊 method to align seismic data after CO2
injection including 10p10, 08p08, 06p07, 04p07, 01p07, and 99p01
with their corresponding registered baseline data. We take the data pair
of 01p07 (Fig. 16b) and 94p07 (Fig. 16a) as an example to illustrate the
registration process. First, we calculate alignment time shifts (Fig. 16c)
between 01p07 and 94p07 by using the DIW method. Hale [82] smooth
alignment errors along all three image dimensions before eventually
using DTW to estimate the shifts. The DTW method is then applied
to find the optimal alignment time shift. From the time shift, we are
able to observe that the time shifts caused by push-down effect (the
downward bending below CO2 plumes) and pull-up effect (the upward
bending at the top CO2 plumes) are also consistent with the previous
studies. We then apply the calculated time shift to 01p07 and obtain
the warped data shown in Fig. 16d. We also compute the difference
(Fig. 16f) between the warped 01p07 and 94p07 and the difference
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Fig. 16. An example of seismic registration with the 𝐷𝐼𝑊 method. Taking the baseline seismic data 99p01 as the reference volume, we compute the registration time shifts
(c) that align the seismic volume 01p07 (b) to the reference one (a). By applying the estimated time shifts to the seismic volume 01p07 (b), we further obtain the registered
seismic volume in (d). We also compute the difference (f) between the warped 01p07 and 94p07 and the difference (e) between the original 01p07 and 94p07. We can observe
some strong amplitudes (denoted by red arrows) corresponding to the push-down effect are weakened after the registration in (f), which is helpful to avoid mis-interpreting these
features as CO2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
(Fig. 16e) between the original 01p07 and 94p07. We can observe some
strong amplitudes as denoted by the red arrow in Fig. 16e due to the
push-down effect, which may be mis-detected as CO2 plumes. While
the amplitude differences after registration (Fig. 16f) become weaker
in the corresponding region and do not generate continuously visible
reflectors, which indicates that our method can effectively reduce the
push-down effect.

Afterward, we apply the same sifts to register the corresponding
CO2 plumes. Fig. 17 shows inline section (extracted from 06p07) before
(left) and after warping (right). The yellow arrows in Fig. 17 indicate
the CO2 plumes move upwards after warping, which indicates that our
registration process might be helpful to reduce the push-down effect
and recover the actual shape of the CO2 plumes. On the other hand,
the white arrows in Fig. 17 indicate our registration process is also
helpful to reduce the pull-up effects. After reducing the acquisition
inconsistency, processing inconsistency, velocity changes (push-down
effects), and wavelet distortion (pull-up effects), we are able to obtain
CO2 plumes whose shapes are more consistent with the real ones.

7. Discussion and conclusion

We propose a deep learning method to automatically characterize
CO2 migration in time-lapse seismic images. Experiments from multiple
perspectives show that our method achieves efficiently detection of
CO2 in time-lapse seismic data while ensuring the accuracy. In order
to achieve this goal, we have addressed the following main challenges
of applying deep neural networks for CO2 detection. One of the great
challenges for neural networks is the lack of labeled datasets. We
firstly solve the great challenge of the lacking of labeled dataset by
proposing propose a workflow to synthesize seismic data of diffusive
CO plumes with different shapes, sizes, and locations for training
14

2

deep neural networks. With stochastic simulation and seismic forward
modeling based on geological background and petrophysical statistics,
we are able to obtain diverse and reasonable synthetic training datasets
with accurate labels. Another challenge is that utilizing synthetic data
to train neural networks encounters poor generalization in field data.
To improve the generalization of the neural network, we include the
baseline field data before CO2 injection into the training datasets to
allow the network to recognize the structural information of the field
survey and keep the network away from incorrect prediction. In this
way, we can obtain a combination of mixed training datasets where
the synthetic datasets tell our neural network to detect all possible CO2
features while the field ones tell our network to avoid mis-detecting the
features resembling the true CO2 features.

The application of time-lapse seismic images from the Sleipner
indicates that our method is consistent with the manual interpretation.
Limited by the cost of manual interpretation, the CO2 plumes on
the manually interpreted nine layers only exist within one seismic
data. With our CNN-based model, we can provide the CO2 plumes
over 9 layers within every time-lapse seismic data. Besides, the 3-D
view of our predicted results clearly show the growth of CO2 plumes
under the subsurface along with the continuous injection of CO2. The
observations in our results are consistent with the previous studies.

Some limitations remain in our method. One limitation is related
to the simulated synthetic training datasets. We simulate the training
datasets in this study based on the statistic data (e.g., velocity, density,
frequency) in the Sleipner survey. This indicates that the CNN trained
by these training datasets might not work well for other field sur-
veys. Fortunately, our workflow allows us to quickly generate training
samples that are compatible with a new field survey.

To obtain a more consistent CO2 plumes migration model, we use
the 𝐷𝐼𝑊 method to register all the time-lapse seismic volumes with



Fuel 336 (2023) 126806H. Sheng et al.
Fig. 17. The predicted CO2 plumes before (a) and after (b) applying the seismic registration shifts estimated by the 𝐷𝐼𝑊 method. The yellow arrows indicate that CO2 plumes
move upwards because the push-down effect is reduced by applying the seismic registration shifts. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
the baseline seismic volume and also apply the registration shifts to
the predicted CO2 plumes. By doing this, we are able to reduce the
inconsistencies caused by acquisition, processing, velocity variations
(push-down effects), and wavelet distortion (pull-up effects), which is
helpful to obtain a more accurate CO2 plume migration model.
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